error function - definitie. Wat is error function
DICLIB.COM
AI-gebaseerde taaltools
Voer een woord of zin in in een taal naar keuze 👆
Taal:     

Vertaling en analyse van woorden door kunstmatige intelligentie

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

Wat (wie) is error function - definitie

SIGMOID SHAPE SPECIAL FUNCTION WHICH OCCURS IN PROBABILITY, STATISTICS AND PARTIAL DIFFERENTIAL EQUATIONS
Imaginary error function; Complementary error function; Erfc; Ierfc; Erf(x); Erfc(x); Faddeeva; Probability integral; Erfi; Erf function; Function of Laplace; Gaussian error function; Wikipedia talk:Articles for creation/Gaussian Error Function; Error Function; Gauss error function; Gaussian Error Function; ERFC; Erfcx; Inverse error function; Erfi(x); Erfcx(x); Cerfc; Numerical approximations of the error function
  • ''E''<sub>5</sub>(''x'')}}.
  • Inverse error function
  • the normal cumulative distribution function plotted in the complex plane
  • Plot of the complementary error function Erfc(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D
  • Plot of the error function Erf(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D
  • Plot of the imaginary error function Erfi(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D

Loss function         
IN STATISTICS, A FUNCTION REPRESENTING THE COST ASSOCIATED WITH AN EVENT
Objective function; Criterion function; Risk function; Quadratic loss function; Squared error loss; Loss functions; Stochastic criterion function; 0-1 loss function; Zero-one loss function; 0-1 loss; Zero-one loss; Loss Functions
In mathematical optimization and decision theory, a loss function or cost function (sometimes also called an error function) is a function that maps an event or values of one or more variables onto a real number intuitively representing some "cost" associated with the event. An optimization problem seeks to minimize a loss function.
random error         
DIFFERENCE BETWEEN A MEASURED QUANTITY VALUE AND A REFERENCE QUANTITY VALUE
ObservationalError; Measurement error; Experimental error; Systematic bias; Random error; Systematic error; Systemic error; Alleged systemic bias; Random errors; Systematic errors; Measurement errors; Observational Error; Systematic effect; Chance error; Accidental error; Constant error; Stochastic error; Observation error; Systematic and random error; Systematic and random errors; Random and systematic errors; Measurement Error
¦ noun Statistics an error in measurement caused by factors which vary from one measurement to another.
Observational error         
DIFFERENCE BETWEEN A MEASURED QUANTITY VALUE AND A REFERENCE QUANTITY VALUE
ObservationalError; Measurement error; Experimental error; Systematic bias; Random error; Systematic error; Systemic error; Alleged systemic bias; Random errors; Systematic errors; Measurement errors; Observational Error; Systematic effect; Chance error; Accidental error; Constant error; Stochastic error; Observation error; Systematic and random error; Systematic and random errors; Random and systematic errors; Measurement Error
Observational error (or measurement error) is the difference between a measured value of a quantity and its true value.Dodge, Y.

Wikipedia

Error function

In mathematics, the error function (also called the Gauss error function), often denoted by erf, is a complex function of a complex variable defined as:

erf z = 2 π 0 z e t 2 d t . {\displaystyle \operatorname {erf} z={\frac {2}{\sqrt {\pi }}}\int _{0}^{z}e^{-t^{2}}\,\mathrm {d} t.}

Some authors define erf {\displaystyle \operatorname {erf} } without the factor of 2 / π {\displaystyle 2/{\sqrt {\pi }}} . This integral is a special (non-elementary) sigmoid function that occurs often in probability, statistics, and partial differential equations. In many of these applications, the function argument is a real number. If the function argument is real, then the function value is also real.

In statistics, for non-negative values of x, the error function has the following interpretation: for a random variable Y that is normally distributed with mean 0 and standard deviation 1/2, erf x is the probability that Y falls in the range [−x, x].

Two closely related functions are the complementary error function (erfc) defined as

erfc z = 1 erf z , {\displaystyle \operatorname {erfc} z=1-\operatorname {erf} z,}

and the imaginary error function (erfi) defined as

erfi z = i erf i z , {\displaystyle \operatorname {erfi} z=-i\operatorname {erf} iz,}

where i is the imaginary unit.